Serveur d'exploration sur les effecteurs de la rouille

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.

Identifieur interne : 000105 ( Main/Exploration ); précédent : 000104; suivant : 000106

Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.

Auteurs : Jana Sperschneider [Australie] ; Hua Ying [Australie] ; Peter N. Dodds [Australie] ; Donald M. Gardiner [Australie] ; Narayana M. Upadhyaya [Australie] ; Karam B. Singh [Australie] ; John M. Manners [Australie] ; Jennifer M. Taylor [Australie]

Source :

RBID : pubmed:25225496

Abstract

Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.

DOI: 10.3389/fpls.2014.00372
PubMed: 25225496
PubMed Central: PMC4150398


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.</title>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ying, Hua" sort="Ying, Hua" uniqKey="Ying H" first="Hua" last="Ying">Hua Ying</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gardiner, Donald M" sort="Gardiner, Donald M" uniqKey="Gardiner D" first="Donald M" last="Gardiner">Donald M. Gardiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Queensland Bioscience Precinct, Commonwealth Scientific and Industrial Research Organisation Brisbane, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Queensland Bioscience Precinct, Commonwealth Scientific and Industrial Research Organisation Brisbane, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Karam B" sort="Singh, Karam B" uniqKey="Singh K" first="Karam B" last="Singh">Karam B. Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia ; University of Western Australia Institute of Agriculture, University of Western Australia Crawley, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia ; University of Western Australia Institute of Agriculture, University of Western Australia Crawley, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Manners, John M" sort="Manners, John M" uniqKey="Manners J" first="John M" last="Manners">John M. Manners</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25225496</idno>
<idno type="pmid">25225496</idno>
<idno type="doi">10.3389/fpls.2014.00372</idno>
<idno type="pmc">PMC4150398</idno>
<idno type="wicri:Area/Main/Corpus">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000102</idno>
<idno type="wicri:Area/Main/Curation">000102</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000102</idno>
<idno type="wicri:Area/Main/Exploration">000102</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.</title>
<author>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ying, Hua" sort="Ying, Hua" uniqKey="Ying H" first="Hua" last="Ying">Hua Ying</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gardiner, Donald M" sort="Gardiner, Donald M" uniqKey="Gardiner D" first="Donald M" last="Gardiner">Donald M. Gardiner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Queensland Bioscience Precinct, Commonwealth Scientific and Industrial Research Organisation Brisbane, QLD, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Queensland Bioscience Precinct, Commonwealth Scientific and Industrial Research Organisation Brisbane, QLD</wicri:regionArea>
<wicri:noRegion>QLD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Singh, Karam B" sort="Singh, Karam B" uniqKey="Singh K" first="Karam B" last="Singh">Karam B. Singh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia ; University of Western Australia Institute of Agriculture, University of Western Australia Crawley, WA, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia ; University of Western Australia Institute of Agriculture, University of Western Australia Crawley, WA</wicri:regionArea>
<wicri:noRegion>WA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Manners, John M" sort="Manners, John M" uniqKey="Manners J" first="John M" last="Manners">John M. Manners</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25225496</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.</ArticleTitle>
<Pagination>
<MedlinePgn>372</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2014.00372</ELocationID>
<Abstract>
<AbstractText>Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sperschneider</LastName>
<ForeName>Jana</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ying</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gardiner</LastName>
<ForeName>Donald M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Queensland Bioscience Precinct, Commonwealth Scientific and Industrial Research Organisation Brisbane, QLD, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Upadhyaya</LastName>
<ForeName>Narayana M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Karam B</ForeName>
<Initials>KB</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research Organisation Perth, WA, Australia ; University of Western Australia Institute of Agriculture, University of Western Australia Crawley, WA, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manners</LastName>
<ForeName>John M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Jennifer M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Plant Industry, Black Mountain Laboratories, Commonwealth Scientific and Industrial Research Organisation Canberra, ACT, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Puccinia graminis</Keyword>
<Keyword MajorTopicYN="N">adaptation</Keyword>
<Keyword MajorTopicYN="N">avirulence</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">fungal pathogens</Keyword>
<Keyword MajorTopicYN="N">rust</Keyword>
<Keyword MajorTopicYN="N">selection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>07</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25225496</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2014.00372</ArticleId>
<ArticleId IdType="pmc">PMC4150398</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Sep;8(9):e1002952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 May 08;10(6):417-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Mar 1;6(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(8):R171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17708774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2009 Jul;9(4):656-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19442589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Oct;27(10):2257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20447933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Jun;30(6):1337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23515261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Jun;19(6):908-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Jan;8(1):e1002467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Aug;11(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20585331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jan 31;343(6170):552-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jan 08;5:759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25620970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2011 Dec;13(12):1849-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21848815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2013 Sep 05;1(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:465-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21568701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2014 Mar;27(3):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24156769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Apr 12;340(6129):147-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23580514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Jan 13;11:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):800-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Mar 24;5:98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24715894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2010 May;59(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Plant Biol. 2010 May 20;37(6):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 May;8(3):321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Nov 20;14:807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24252298</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Sperschneider, Jana" sort="Sperschneider, Jana" uniqKey="Sperschneider J" first="Jana" last="Sperschneider">Jana Sperschneider</name>
</noRegion>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Gardiner, Donald M" sort="Gardiner, Donald M" uniqKey="Gardiner D" first="Donald M" last="Gardiner">Donald M. Gardiner</name>
<name sortKey="Manners, John M" sort="Manners, John M" uniqKey="Manners J" first="John M" last="Manners">John M. Manners</name>
<name sortKey="Singh, Karam B" sort="Singh, Karam B" uniqKey="Singh K" first="Karam B" last="Singh">Karam B. Singh</name>
<name sortKey="Taylor, Jennifer M" sort="Taylor, Jennifer M" uniqKey="Taylor J" first="Jennifer M" last="Taylor">Jennifer M. Taylor</name>
<name sortKey="Upadhyaya, Narayana M" sort="Upadhyaya, Narayana M" uniqKey="Upadhyaya N" first="Narayana M" last="Upadhyaya">Narayana M. Upadhyaya</name>
<name sortKey="Ying, Hua" sort="Ying, Hua" uniqKey="Ying H" first="Hua" last="Ying">Hua Ying</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000105 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000105 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25225496
   |texte=   Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25225496" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustEffectorV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 10 15:52:57 2020. Site generation: Tue Nov 10 15:53:28 2020